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Stability of a coupled body–vortex system
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This paper considers the dynamics of a rigid body interacting with point vortices in a
perfect fluid. The fluid velocity is obtained using the classical complex variables theory
and conformal transformations. The equations of motion of the solid–fluid system are
formulated in terms of the solid variables and the position of the point vortices only.
These equations are applied to study the dynamic interaction of an elliptic cylinder
with vortex pairs because of its relevance to understanding the swimming of fish in
an ambient vorticity field. Two families of relative equilibria are found: moving Föppl
equilibria; and equilibria along the ellipse’s axis of symmetry (the axis perpendicular
to the direction of motion). The two families of relative equilibria are similar to those
present in the classical problem of flow past a fixed body, but their stability differs
significantly from the classical ones.

1. Introduction
This paper is concerned with the dynamics and stability of a rigid body interacting

with point vortices in potential flow. The primary motivation is to study the interaction
of fish with ambient vorticity. Liao et al. (2003) have reported that live rainbow trout
exploit the vortices in the ambient flow to reduce their locomotory costs, taking
advantage of the vortex energy in the surrounding fluid. Beal et al. (2006) showed
that dead trout can recover sufficient energy from the surrounding flow to allow it
to swim passively upstream. Inspired by these results, we propose a reduced model
of a rigid body interacting dynamically with surrounding point vortices and we
demonstrate that the rigid body can swim in the direction opposite to the motion of
point vortices at no energy cost. Indeed, the rigid body itself does not generate any
force and its motion is due entirely to energy available from the presence of the point
vortices.

The dynamics of a rigid body interacting with point vortices was considered
in Borisov & Mamaev (2003) and in Shashikanth et al. (2002) and Shashikanth (2005)
for the case when the vortex strength sum to zero (

∑N

k =1 Γk = 0). The equations
governing the motion of the rigid body were derived using Newtonian mechanics
while the motion of the point vortices was described by a Kirchhoff–Routh function.
The resulting equations were shown to have a Hamiltonian structure and were
applied to the study of a circular cylinder. In this work, we appeal to the classical
theory of complex variables and conformal transformations to generalize the results
in Shashikanth et al. (2002) and Shashikanth (2005) to a cylinder of any cross-sectional
geometry (that can be mapped conformally to a unit circle). More specifically, we
generalize the results of Lin (1941a, b) concerning the motion of N point vortices
in a multiply connected fluid domain with fixed boundaries where he established
the existence of a Kirchhoff–Routh function governing the motion of the vortices
and investigated its behaviour under conformal transformations of the fluid motion.
We derive the equations of motion when the net circulation around the moving
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cylinder does not necessarily sum to zero. Note that the governing equations were
simultaneously derived in Borisov, Mamaev & Ramodanov (2007) following a different
approach with emphasis on the Hamiltonian structure of the system. Also note that
the interactions of multiple rigid bodies in potential flow was considered in Wang
(2004), Kanso et al. (2005), Crowdy, Surana & Yick (2007) and Nair & Kanso (2007).

We use the derived equations to study the motion of an elliptic cylinder interacting
with a vortex pair for its relevance to understanding the swimming of fish in an
ambient vorticity field. We examine the stability of the relative equilibria of the
vortex–ellipse system. By relative equilibria, we mean motions where the vortex pair
and the elliptic cylinder move rigidly (at the same velocity). We find two families of
such equilibria. The first family is a generalization of the classical Föppl equilibria
behind a stationary circular cylinder in an ambient uniform flow and was discussed
in Shashikanth et al. (2002) for the case of a moving circular cylinder. The second
family of equilibria is located at the ellipse’s axis of symmetry which is perpendicular
to the direction of motion. Both families of equilibria are observed in the classical
problem of flow past a stationary ellipse (see e.g. Hill 1998). However, the stability of
the relative equilibria of the moving ellipse–vortex system differs significantly from
the stability of the classical equilibria for flow past a stationary ellipse. In the classical
problem, we find, subject to symmetric perturbations, that the Föppl equilibria are
stable and the equilibria along the axis of symmetry are unstable. For an ellipse
interacting dynamically with a vortex pair, the Föppl equilibria are mostly unstable
subject to symmetric perturbations whereas the equilibria along the ellipse’s axis of
symmetry are mostly stable subject to such perturbations. These unstable and stable
equilibria may be important for designing the swimming motion of the solid body.
We explore this idea via numerical examples.

The organization of this paper is as follows. The problem setting is described in
§ 2. The fluid velocity is discussed in § 3. The streamfunction which dictates the fluid
velocity is obtained in § 4 using conformal transformation. The equations governing
the motion of the solid body are derived in § 5 using Newtonian mechanics. The
problem of an elliptic body interacting with vortex pairs is considered in § 6. The
findings of this work and future directions are summarized in § 7.

2. Problem setting
Consider a planar body moving in an infinitely large volume of incompressible,

inviscid and irrotational fluid F at rest at infinity. The body B is assumed to occupy a
simply connected region whose boundary can be conformally mapped to a unit circle,
and it is considered to be uniform neutrally-buoyant (the body weight is balanced by
the force of buoyancy). Introduce an orthonormal inertial frame {e1,2,3} where {e1, e2}
span the plane of motion and e3 is the unit normal to this plane. The configuration
of the submerged rigid body can then be described by a rotation β about e3 and
a translation xo = xoe1 + yoe2 of a point O (often chosen to coincide with the mass
centre) in the {e1, e2} directions. The angular and translational velocities expressed
relative to the inertial frame are of the form β̇ e3 and v = vx e1 + vy e2 where vx = ẋo,
vy = ẏo (the dot denotes derivative with respect to time t). It is convenient for the
following development to introduce a moving frame {b1,2,3} attached to the body. The
point transformation from the body to the inertial frame can be represented as

x = RX + xo, R =

(
cosβ − sinβ

sin β cos β

)
, (1)
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Figure 1. A rigid body undergoing a general rigid motion and interacting with
N point vortices.

where x = x e1 + y e2 and X = X b1 + Y b2, while vectors transform as v = RV . The
angular and translational velocities expressed in the body frame take the form
Ω =Ω b3 (where Ω = β̇) and V = V1b1 + V2b2 (where V1 = ẋo cosβ + ẏo sinβ and
V2 = − ẋo sinβ + ẏo cos β).

Let N point vortices of strength Γk (k = 1, . . . , N) be placed in the fluid domain
which extends to infinity and is bounded internally by the rigid body. The positions
of the point vortices are denoted by (xk, yk) in the inertial frame {ei} and (Xk, Yk) in
the body frame {bi}. In this work, we take Γk to be positive in the counterclockwise
direction, and we do not require the sum

∑n

k =1 Γk of strength of the point vortices
nor the net circulation Γo around the rigid body to be zero (figure 1).

3. Fluid velocity
The fluid velocity u = uxe1 + uye2 at a point (x, y) that does not coincide with a

point vortex is given by the real potential function φ or the streamfunction ψ

(ux, uy) =

(
∂φ

∂x
,
∂φ

∂y

)
, or, alternativerly, (ux, uy) =

(
∂ψ

∂y
, −∂ψ

∂x

)
. (2)

The existence of φ and ψ are guaranteed by irrotationality and by the continuity
equation div(u) = 0, respectively. From the linearity of the problem, the streamfunction
ψ(x, y) can be written in the form

ψ = ψb + ψv + Γoψo. (3)

Similarly, we may write φ = φb + φv + Γoφo. The streamfunction ψb is due to the
motion of the solid body. It may be written in the Kirchhoff form (see e.g. Lamb
1932)

ψb = ψxvx + ψyvy + ψββ̇. (4)

Here, ψx , ψy and ψβ are harmonic functions in the fluid domain F subject to the
boundary conditions

ψb|∂B = yvx − xvy + 1
2
((x − xo)

2 + (y − yo)
2)β̇, ψb|∞ = 0. (5)

Similarly, we have

φb = ϕxvx + ϕyvy + ϕββ̇, (6)
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where ϕx , ϕy and ϕβ are harmonic functions subject to the boundary conditions

∂φb

∂n

∣∣∣∣
∂B

= nxvx + nyvy + ((x − xo)ny − (y − yo)nx)β̇, φb|∞ = 0, (7)

where (nx, ny) are the components of the unit normal n = nxe1 + nye2 into the fluid.
The streamfunction ψv due to the presence of the point vortices satisfies

	ψv = −
∑

k

Γkδ(x − xk)δ(y − yk), (8)

where δ(x − xk) and δ(y − yk) denote the Dirac delta function. ψv can be written as

ψv =
∑

k

Γkψk, (9)

where ψk are harmonic everywhere in the fluid domain F except at the kth vortex
and they satisfy the boundary conditions

ψk|∂B = constant, ψk|∞ = 0. (10)

Lastly, Γoψo represents the streamfunctions due to a non-zero net circulatory flow
around the body. Here, ψo is harmonic in the fluid domain satisfying the boundary
conditions

ψo|∂B = constant, ψo|∞ = 0 . (11)

The quantity Γo can be interpreted as follows. Assume a non-zero constant circulation
Γc around the body that may be caused by the presence of the point vortices as well
as the presence of a pure circulatory flow around the body (that does not vanish
when vortex strength Γk are set to zero). The circulation Γc is defined as

Γc =

∮
∂B

u · dx =

∮
∂B

∂ψ

∂n
ds =

∑
k

Γk + Γo. (12)

Clearly, Γo represents the total circulation around the body minus the circulation
induced by the point vortices.

4. Streamfunction, Kirchhoff–Routh function and vortex motion
The streamfunction ψ can be calculated using a conformal transformation that

relates the flow field in the region exterior to the body to that in the region exterior to
the unit circle. For concreteness, let the rigid body be placed in the plane parameterized
by (x, y) and let a circle of unit radius be placed in a plane parameterized by (x̃, ỹ). It
is more convenient for what follows to introduce the complex coordinates z̃ = x̃ + iỹ
(where i =

√
−1) and z = x+iy, and their complex conjugates z̃∗ = x̃−iỹ and z∗ = x−iy,

respectively. To this end, the conformal transformation can be written as

z̃ = F (z), (13)

where the inverse transformation z̃ =F −1(z) may be expanded into a Laurent series
of the form (see e.g. Silverman 1974)

z = F −1(z̃) = Az̃ + zo +
A1

z̃
+

A2

z̃2
+ · · · , A, A1, A2, . . . ∈ �+. (14)

The point zo is referred to as the conformal centre of the body. We assume that the
origin of the body frame is placed at the conformal centre zo. Note that we may
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rewrite the conformal transformation (13) in terms of body coordinates as Z̃ =F (Z)
where Z̃ = X̃ + iỸ is measured relative to a frame attached to the centre of the unit
circle and Z =X+iY is measured relative to the body frame attached to the conformal
centre zo.

The complex potential w(z) is defined as w(z) = φ(x, y) + iψ(x, y) and the complex
velocity u = ux + iuy (at a non-singular point) is given by u∗ = dw/dz (where u∗ is the
complex conjugate of u). The complex potential w(z) in the z-plane is related to the
complex streamfunction w̃(z̃) in the circle-plane by

w(z) = w̃(z̃) = w̃(F (z)). (15)

Let ωb = φb + iψb be the complex potential due to the motion of the solid body with
the harmonic functions φb and ψb subject to the boundary conditions (7) and (5),
respectively. The problem of solving for φb and ψb can be restated as a Riemann–
Hilbert problem of the form (see e.g. Muskhelishvili 1953; Crowdy et al. 2007)

Re[−iwb(z)] = Re
[
(vx − ivy)(−i)(z − zo) − 1

2
β̇(z − zo)

2
]

on ∂B, (16)

which can be transformed, using the conformal mapping (13) and its inverse, into
a Dirichlet problem for the circle whose solution is given in terms of the Schwarz
formula. It is more convenient for later to first express φb and ψb in terms of body
coordinates: φb(X, Y ) = V1 ϕ1 + V2 ϕ2 + Ω ϕΩ and ψb(X, Y ) = V1 ψ1 + V2 ψ2 + Ω ψΩ

where φ1, φ2, φΩ and ψ1, ψ2, ψΩ are functions of (X, Y ) and are analogous to φx, φy, φβ

and ψx, ψy, ψβ of (6) and (4), respectively. To this end, (16) can be rewritten as

Re
[

− iwb(Z)
]

= Re
[
(V1 − iV2)(−iZ) − 1

2
ΩZ2

]
on ∂B, (17)

This equation becomes, under the conformal mapping to the circle plane,

Re[−iw̃b(Z̃)] = Re
[

− i(V1 − iV2)(F
−1(Z̃)) − 1

2
Ω(F −1(Z̃))2

]
on |Z̃| = 1, (18)

whose solution is given explicitly by the Schwarz formula

−iw̃b(Z̃) =
1

2πi

∮
|Z̃′ |=1

Re
[

− i(V1 − iV2)(F
−1(Z̃′)) − 1

2
Ω(F −1(Z̃′))2

] (Z̃′ + Z̃)

(Z̃′ − Z̃)

dZ̃′

Z̃′
+ iC

(19)

where Z̃′ is the integration variable and C an arbitrary constant. The complex potential
wb(Z) = w̃b(F (Z)) follows in a straightforward way. Note that this method can be
readily generalized to the case of two or more interacting solids (see Muskhelishvili
1953; Crowdy et al. 2007).

The complex potential w̃v(z̃) in the z̃-plane due to N point vortices located at z̃k

outside the unit circle and of strength Γk is given by the well-known Milne-Thompson
circle theorem

w̃v(z̃) =
∑

k

− iΓk

2π

[
log(z̃ − z̃k) − log

(
z̃ − z̃I

k

)]
, (20)

where z̃I
k = z̃o + 1/(z̃k − z̃o)

∗ denotes the position of image vorticity.
It is also known that the complex potential w̃o(z̃) in the z̃-plane due to a non-zero

net circulation Γo around the circular cylinder is equal to

w̃o(z̃) = − iΓo

2π
log(z̃ − z̃o). (21)
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By virtue of (13), (15) and (20–21), we obtain

w(z) = wb(z) +
∑

k

− iΓk

2π

[
log

(
F (z) − F

(
zk

))
− log

(
F (z) − F

(
zI

k

))]

− iΓo

2π
log(F (z) − F (zo)). (22)

The complex velocity ũ= ũx̃ + iũỹ at an arbitrary point z̃ that does not coincide
with any of the point vortices is obtained from the relation ũx̃ − iũỹ = dw̃/dz̃, whereas
the velocity induced at a point vortex is given by

ũx̃ − iũỹ |z̃k
=

d

dz̃

[
w̃ +

iΓk

2π
log(z̃ − z̃k)

]
z̃=z̃k

. (23)

The complex velocity at a point in the z-plane is related to that at a point in the
z̃-plane via the chain rule in the usual way

ux − iuy =
dw

dz
=

dw̃

dz̃

dF

dz
. (24)

This relation is true everywhere except at the vortex locations where, due to a theorem
by Lin (1941b), we have

ux − iuy |
zk

=
d

dz

[
w(z) − iΓk

4π
log

(
dF

dz

)]
z=zk

. (25)

Lin (1941a) showed that there exists a Kirchhoff–Routh function W =
W (x1, y1, . . . , xn, yn) such that the motion of the kth vortex is given by

Γkuk =

(
∂W

∂yk

, −∂W

∂xk

)T

. (26)

Here, uk = (ux, uy)
T |(xk,yk ) denotes the ordinary fluid velocity of the kth vortex. Lin also

investigated the behaviour of the Kirchhoff–Routh function under a conformal trans-
formation in Lin (1941b) where he showed that the transformed function is given by

W (x1, y1, . . . , xn, yn) = W̃ (x̃1, ỹ1, . . . , x̃n, ỹn) −
n∑

k=1

Γ 2
k

4π
log

∣∣∣∣dF

dz

∣∣∣∣
zk

. (27)

By definition, the Kirchhoff–Routh function in the circle-plane is equal to

W̃ =
∑

k

Γkψ̃
b(z̃k) +

∑
k,l,k �=l

− iΓkΓl

4π

[
log |z̃l − z̃k| − log

∣∣z̃l − z̃I
k

∣∣]

+
∑

k

iΓ 2
k

4π
log

∣∣z̃k − z̃I
k

∣∣ +
∑

k

− iΓkΓo

2π
log |z̃k − z̃o| , (28)

which can be expressed in the z-plane by substituting (28) into (27) and using (13).
The Kirchhoff–Routh theory remains valid when the function W is expressed in

terms of the body-fixed coordinates (Xk, Yk). Namely, we have

Γk

(
dXk

dt
+ Ω × Xk + V

)
=

∂W

∂Yk

b1 − ∂W

∂Xk

b2. (29)

To obtain W in terms of the body coordinates (Xk, Yk), it suffices to use ψb from (19),
rewrite (20) and (21) in terms of the body coordinates Z̃ and use the conformal
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transformation Z̃ = F (Z). To this end, W (X1, Y1, . . . , XN, YN ) in the body frame
reads as

W =
∑

k

Γkψ
b(Zk) +

∑
k,l(k �=l)

−ΓkΓl

4π

(
log |F (Zk) − F (Zl)| − log

∣∣∣∣F (zk) − 1

F ∗(Zl)

∣∣∣∣
)

+
∑

k

Γ 2
k

4π
log

∣∣∣∣F (Zk)−
1

F ∗(Zk)

∣∣∣∣+∑
k

−ΓkΓo

2π
log |F (Zk)|−

∑
k

Γ 2
k

4π
log

∣∣∣∣dF

dZ

∣∣∣∣
Zk

. (30)

5. Equations of motion
Let pfluid and πfluid be the linear and angular impulse of the fluid with respect

to the inertial frame {ei}. Following a similar derivation to that in Saffman (1992)
and Shashikanth et al. (2002) and normalizing the fluid density to one, we can readily
verify that the fluid impulse due to the body with circulation and the point vortices
is

pfluid =

∮
∂B

φb n ds +

∮
∂B

x × (n × uv) ds +
∑

k

Γk xk × e3 + Γo xo × e3, (31a)

πfluid =

∮
∂B

φb x × n ds − 1
2

∮
∂B

‖x‖2n × uv ds − 1
2

∑
k

Γk‖xk‖2e3 − 1
2
Γo‖xo‖2e3, (31b)

where uv =(∂ψv/∂y)e1−(∂ψv/∂x)e2 denotes the velocity induced by the point vortices
at the solid boundary and xo corresponds to the conformal centre zo – the conformal
centre has the property that the moment due to a net circulation about xo is zero
(xo can also be thought of as the centroid of vorticity, or image vorticity). The total
impulse of the solid–fluid system is equal to

p = mv + pfluid , π = I β̇ e3 + xo × mv + πfluid , (32)

where m and I are the mass and moment of inertia of the solid body. In the absence
of external forces and moments applied to the solid–fluid system, the total linear and
angular impulse are conserved,

ṗ = 0, π̇ = 0. (33)

Expressions for the linear and angular impulse with respect to the body–frame
can be readily computed by transforming (31) and (32) to the body frame. It is
convenient for what follows to introduce the components of the impulse Pb and Πb

due to the motion of the solid body

Pb = mV +

∮
∂B

φb N ds, Πb = IΩ − 1
2

∮
∂B

φb X × N ds, (34)

and the impulse components Pv and Πv due to the presence of the point vortices

Pv =

∮
∂B

X × (N × Uv) ds +
∑

k

Γk Xk × b3, (35a)

Πv = −1

2

∮
∂B

‖X‖2 N × Uv ds − 1
2

∑
k

Γk‖Xk‖2b3. (35b)

Here, N and Uv denote the normal vector and fluid velocity expressed in body frame.
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The impulse Pb and Πb from (34) can be conveniently written, following a standard
procedure (see e.g. Kanso et al. 2005), as follows(

Πb

Pb

)
= �

(
Ω

V

)
. (36)

Here, � is an inertia matrix that is the sum of the actual body inertia �b and the
added inertias �a

�b =

⎛
⎜⎝

I 0 0

0 m 0

0 0 m

⎞
⎟⎠ , �a =

⎛
⎜⎜⎜⎜⎜⎜⎝

∮
ϕΩ

∂ϕΩ

∂n
ds

∮
ϕΩ

∂ϕ1

∂n
ds

∮
ϕΩ

∂ϕ2

∂n
ds∮

ϕ1

∂ϕΩ

∂n
ds

∮
ϕ1

∂ϕ1

∂n
ds

∮
ϕ1

∂ϕ2

∂n
ds∮

ϕ2

∂ϕΩ

∂n
ds

∮
ϕ2

∂ϕ1

∂n
ds

∮
ϕ2

∂ϕ2

∂n
ds

⎞
⎟⎟⎟⎟⎟⎟⎠

. (37)

Meanwhile, Pv and Πv of (35) can be simplified further by proving, following
Shashikanth (2005), that∮

∂B
X × (N × Uv) ds =

∑
k

Γkψ1(Xk) b1 +
∑

k

Γkψ2(Xk) b2, (38)

and

− 1
2

∮
∂B

‖X‖2 N × Uv ds =
∑

k

ΓkψΩ (Xk) b3. (39)

Hence, (35a, b) become

Pv =
∑

k

Γkψ1(Xk) b1 +
∑

k

Γkψ2(Xk) b2 +
∑

k

Γk Xk × b3, (40a)

Πv =

(∑
k

ΓkψΩ (Xk) − 1
2

∑
k

Γk‖Xk‖2

)
b3. (40b)

Define the linear and angular impulse P = Pb + Pv and Π = Πb + Πv . We can
verify, using the rigid transformation (1), that P and Π are related to p and π in (32)
as follows

p = R P + Γc xo × e3, π = Π + xo × p. (41)

The balance laws (33) can then be expressed in the body-fixed frame in the form

Ṗ = P × Ω + Γc b3 × V , Π̇ = P × V . (42)

Equations (29) and (42) form a closed system for the set of 2N + 3 unknowns
P =P1b1 + P2b2, Π = Π b3 and Xk = Xkb1 + Ykb2. The body orientation and the
position of the conformal centre (origin of body-fixed frame) can be found by
integrating β̇ = Ω and ẋo =RV .

Remark 1. It is worth emphasizing that p and π are conserved quantities while P
and Π are not. However, the system (29) and (42) may admit integrals of motion
(i.e. functions of (Π, P, Xk) that are conserved). An example of such functions for
Γc = 0 is C = ‖P‖2. In the case when Γc is not zero, ‖P‖2 may no longer be conserved,
but we can construct the following integral of motion

C = 1
2
‖P‖2 + Γc Π. (43)



Stability of a coupled body–vortex system 85

Remark 2. The system of equations (42) and (29) is a Lie–Poisson system whose
Hamiltonian structure is discussed in Shashikanth (2005) for the case Γo = 0 and
in Borisov et al. (2007) for the general case considered here.

6. An elliptic cylinder interacting with vortex pairs
Consider a cylinder with an elliptic cross-section interacting with pairs of point

vortices of equal and opposite strength. Assume that the circulation around the ellipse
is zero, Γo = 0. Let a and b be the major and minor axes of the ellipse. The conformal
transformation Z̃ =F (Z) that maps the exterior of the ellipse to the exterior of
the unit circle can be conveniently described by introducing hyperbolic coordinates
(μ, ν),

Z = c cosh(μ + iν) = c coshμ cos ν + ic sinhμ sin ν, c2 = a2 − b2, (44)

so that

Z̃ = F (Z) = (a − b)eμ+iν. (45)

The complex potential ωb(Z) = φb + iψb of (19) can be expressed in hyperbolic
coordinates as (see e.g. Batchelor 1970, or Lamb 1932)

wb = −V1 b

√
a + b

a − b
e−(μ+iν) − i V2 a

√
a + b

a − b
e−(μ+iν) − i Ω

(
a + b

2

)2

e−2(μ+iν). (46)

To this end, we can readily verify that the inertia matrices of (37) are given by

�b =

⎛
⎜⎝

1
4
πab(a2 + b2) 0 0

0 πab 0

0 0 πab

⎞
⎟⎠ �a =

⎛
⎜⎝

1
8
π(a2 − b2)2 0 0

0 πb2 0

0 0 πa2

⎞
⎟⎠ . (47)

The complex potential ω and the Kirchhoff–Routh function W of (30) in the Z-
plane can both be expressed, by virtue of (45) and after some standard algebraic
manipulations, in terms of the hyperbolic variables μk and νk . The expressions for the
stream and Kirchhoff–Routh functions are substituted into (29) and (42) to obtain
equations for (Xk, Yk) and (Π, P1, P2).

6.1. Relative equilibria and their stability

We distinguish two families of relative equilibria for the problem of an ellipse
interacting dynamically with a vortex pair (figure 2). By relative equilibria, we mean
solutions of (29) and (42) where the point vortices move rigidly (at the same velocity)
with the cylinder and are stationary in the body frame. The first family of equilibria
will be referred to as the moving Föppl equilibria since it is a generalization of the
classical Föppl equilibria behind a stationary circular cylinder in an ambient uniform
flow. It was discussed in Shashikanth et al. (2002) for the case of a moving circular
cylinder. A study of the classical equilibria behind a stationary elliptic cylinder can
be found in Hill (1998). Similar results hold for the moving elliptic cylinder. The
positions Ze1 of the moving Föppl equilibria are located on the images (under the
conformal transformation) of the curves Z̃e1 = R̃e1 exp±iθ̃e1 described by

sin2(θ̃e1) =
(α2 − 1)2(α2 − λ)

4(α6 − λ)
, α = R̃e1, λ =

a − b

a + b
. (48)
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Figure 2. Relative equilibria where the vortices (of equal and opposite strength) and the ellipse
are moving rigidly (with the same velocity) in the b1-direction: (a) moving Föppl equilibrium
and (b) relative equilibrium where the vortices are located on the b2 axis of symmetry.
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Figure 3. The loci of the relative equilibria associated with a translational rigid motion in
the b1-direction. Both the moving Föppl equilibria and the relative equilibria located on the
axis of symmetry are depicted in (a) for a circular cylinder with aspect ratio b/a = 1, (b) for
an elliptic cylinder with b/a = 0.5, and (c) for a flat plate with b/a =0. The stability of these
equilibria depends on the aspect ratio b/a of the cylinder. The region of marginal stability
(subject to symmetric perturbations) is depicted by a solid line while the dashed line refer to
the unstable equilibria. The instability region on the Föppl curve increases as the aspect ratio
a/b decreases. At the same time, the instability region of the relative equilibria located on the
ellipse axis of symmetry decreases as the aspect ratio a/b decreases.

The strength Γe1 of the vortex pair is related to the velocity in the b1-direction of the
vortex–ellipse system by

Γe1

2πV1

= ± (α2 − 1)2(α2 + 1)(λ − α4)2

α(λ + λα8 − 2λα6 − 2λα4 + λα2 + α10)

√
α2 − λ

α6 − λ
. (49)

We find a second family of equilibria associated with a translational motion in the
b1-direction. These equilibria lie along the b2-axis of symmetry of the ellipse, that is,
on the line Xe2 = 0. At each equilibrium position along the b2-axis, the strength of the
vortex pair is related to the translational velocity of the vortex–ellipse system by

Γe2

2πV1

= ± 2(β2 − 1)(β2 + 1)2(β2 + λ)

β(β2 + 1)2(β2 + λ) + 2β3(1 − λ)(β2 − 1)
, β = Ỹe2. (50)

The loci of both families of relative equilibria are depicted in figure 3 for a circular
cylinder with aspect ratio b/a = 1, an elliptic cylinder with b/a =0.5, and a flat plate
with b/a = 0.

The stability of these relative equilibria can be analysed by linearizing the set of
seven equations (29) and (42) about the equilibrium positions and computing the
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eigenvalues of the associated Jacobian matrix. Because the system (29) and (42) is
Hamiltonian, we can expect only to deduce marginal stability (eigenvalues of the
linearized system lie on the imaginary axis) or instability. To confirm stability subject
to finite perturbations, we must conduct a nonlinear stability analysis in the Lyapunov
sense. It is important to note that Shashikanth et al. (2002) studied the linear and
nonlinear stability of the moving Föppl equilibria behind a circular cylinder. The
linear stability analysis that we present here differs from in Shashikanth et al. (2002)
in two ways. First, the space of the dynamics of the ellipse–vortex system is one-
dimension larger than the circle–vortex system owing to the presence of the rotational
momentum Π . Secondly, the existence and stability of the family of relative equilibria
located at Xe2 = 0 was not mentioned in Shashikanth et al. (2002).

Equations (29) and (42) and their linearized version about the equilibrium positions
can be written, respectively, in the form

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

Y1

X2

Y2

P1

P2

Π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= F(X1, Y1, X2, Y2, P1, P2, Π),
d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δX1

δY1

δX2

δY2

δP1

δP2

δΠ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δX1

δY1

δX2

δY2

δP1

δP2

δΠ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where F is a (seven-dimensional) vector-valued function given by the right-hand side
of (29) and (42) and D = ∇F is the 7 × 7 Jacobian matrix evaluated at the equilibria
e1 and e2. The δ denotes infinitesimal perturbations. The matrix D is computed
numerically using centered differences.

We first examine the eigenvalues of D for the family of moving Föppl equilibria.
We can verify numerically that, analogously to the Föppl equilibria behind a moving
circular cylinder, the linearized equations in (51) decouple under symmetric and
antisymmetric perturbations of the form

δX1 = δXs, δY1 = δYs, δX2 = δXs, δY2 = −δYs, δP1, δP2 = 0, δΠ = 0,

(52)
and

δX1 = δXa, δY1 = δYa, δX2 = −δXa, δY2 = δYa, δP1 = 0, δP2, δΠ. (53)

An arbitrary perturbation can be written in terms of the symmetric perturbation
(δXs, δYs, δP1) and the antisymmetric perturbation (δXa, δYa, δP2, δΠ) in the
straightforward manner

δX1 = δXs + δXa, δY1 = δYs + δYa,

δX2 = δXs − δXa, δY2 = −δYs + δYa,

δP1 = δP1 + 0, δP2 = 0 + δP2, δΠ = 0 + δΠ.

⎫⎬
⎭ (54)

These relations define a non-singular transformation from (δX1, δY1, δX2, δY2, δP1,
δP2, δΠ) to the vector (δXs, δYs, δP1, δXa, δYa, δP2, δΠ). The linearized equations
in (51) can be rewritten in terms of the vector of symmetric and antisymmetric
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Figure 4. Plots of the eigenvalues corresponding to the moving Föppl equilibria as a function
of the position along the Föppl curve. The square of the non-zero eigenvalue of Ds is plotted
in (a) while the maximum eigenvalue of Da is plotted in (b). The ellipse parameters are set to
a = 4/3 and b = 2/3, the vortex strength is set to Γe1 = ± 1.

pertubations

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δXs

δYs

δP1

δXa

δYa

δP2

δΠ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

(
Ds3×3

0
3×4

0
4×3

Da4×4

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δXs

δYs

δP1

δXa

δYa

δP2

δΠ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

We find, upon numerically computing the eigenvalues of Ds and Da that these
moving Föppl equilibria are unstable under antisymmetric perturbations, whereas
there exists a small region on the Föppl curve where these equilibria are marginally
stable under symmetric perturbations. Figure 4 shows a plot of the square of the
non-zero eigenvalue of Ds and a plot of the maximum eigenvalue of Da for the ellipse
parameters a = 4/3 and b = 2/3. This result is consistent with that of the moving the
Föppl equilibria behind a moving circular cylinder.

We now examine the eigenvalues of D for the family of equilibria located at Xe2 = 0.
We can verify numerically that the linearized equations in (51) also decouple under the
symmetric and antisymmetric perturbations (δXs, δYs, δP1) and (δXa, δYa, δP2, δΠ) as
in (52–55). We Find, upon numerically computing the eigenvalues of Ds and Da ,
that these equilibria are unstable under antisymmetric perturbations, whereas they
are marginally stable under symmetric perturbations apart from a small region close
to the ellipse in which they are unstable. Figure 5 gives a plot of the square of the
non-zero eigenvalue of Ds and a plot of the square of the eigenvalues of Da for
the ellipse parameters a = 4/3 and b = 2/3. This result differs significantly from the
stability of the classical equilibria in the case of a stationary ellipse. In the classical
case, instability occurs under symmetric perturbations for all such equilibria perhaps
owing to artificially maintaining a constant free-stream velocity while perturbing the
positions of the point vortices.

In the case of symmetric perturbations, the region of marginal stability for both
the Föppl equilibria and the equilibria on Xe2 = 0 depend on the aspect ratio b/a as
pointed out in figure 3. We define the critical values αc and βc as those for which
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Figure 5. Plots of the eigenvalues corresponding to the relative equilibria located at the axis
of symmetry as a function of Ỹe2. The square of the non-zero eigenvalue of Ds are plotted in
(a) while the square of the eigenvalues of Da (one has two pairs of complex eigenvalues) are
plotted in (b). The ellipse parameters are set to a = 4/3 and b = 2/3, the vortex strength is set
to Γe2 = ± 1.
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Figure 6. The critical position αc is plotted as a function of the aspect ratio b/a in (a) and
the critical position βc is plotted versus b/a in (b). The critical values αc and βc are defined
as those for which the linear stability subject to symmetric perturbations changes character.
That is, the moving Föppl equilibria are marginally stable for α < αc and unstable for α > αc

whereas the relative equilibria along Xe2 = 0 are unstable for β < βc and are marginally stable
for β > βc . As noted in figure 3, as b/a descreases, the region of instability increases for the
moving Föppl equilibria while the region of instability decreases for the equilibria located at
Xe2 = 0. The vortex strength is set to Γe1 =Γe2 = ± 1.

the linear stability subject to symmetric perturbations changes character. That is, αc

is defined such that a moving Föppl equilibrium is marginally stable if α <αc and
unstable if α >αc. Meanwhile, βc is defined such that a relative equilibrium along
Xe2 = 0 is marginally stable if β > βc and unstable if β < βc. The critical positions αc

and βc are plotted in figure 6 as a function of the aspect ratio b/a. We find that as we
flatten the elliptic body, that is, as we decrease b/a while keeping (a + b)/2 = 1, the
stability region along the Föppl curves decreases whereas the stability region along
the axis of symmetry increases.

The marginal stability deduced from this linear analysis does not guarantee stability
subject to finite perturbations. Here, we provide only numerical evidence that these
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Figure 7. The motion of the cylinder and a vortex pair in (a) inertial frame and (b) body
frame. The parameter values are set at a = 3, b = 1, Γ1 = − 10, Γ2 = 10. The point vortices are
initially located at Z1(0) = − 4.5 + i3, Z2(0) = − 4.5 − i3, while the ellipse is initially placed at
(0, 0) with zero initial velocity and zero orientation. The integration time is 200.
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Figure 8. Motion versus time: (a) ellipse velocity and (b) its position correspond to the
motion shown in figure 7.

marginally stable equilibria are indeed nonlinearly stable, as indicated in figure 7(b).
To confirm stability subject to finite perturbations, we would need to conduct a
nonlinear stability analysis which is beyond the scope of this paper.

6.2. Application to swimming

These unstable and stable equilibria may be exploited to design swimming motions
of the ellipse. In this section, we investigate some trajectories close to the relative
equilibria and their relation to swimming motions by numerically integrating (29)
and (42).

Figure 7 shows the motion of the cylinder and a vortex pair both in body-fixed and
inertial frame. Plots of the cylinder’s velocity and position versus time are shown in
figure 8. The parameter values are set at a = 3, b = 1, Γ1 = − 10, Γ2 = 10. The point
vortices are initially located at Z1(0) = −4.5+i3, Z2(0) = −4.5− i3, while the ellipse is
initially placed at (0, 0) with zero initial velocity and zero orientation. The integration
time is 200. The initial conditions can be thought of as a finite perturbation from
the equilibria at Xe2 = 0, yet the point vortices trace closed trajectories in body frame
(figure 7b) – this behaviour is typical around a stable equilibrium. We observed similar
behaviour for a wide range of initial conditions which suggests that the equilibria at
Xe2 = 0 are stable to finite perturbations.

In figure 7, the ellipse starts moving in the same direction as the vortex pair,
reaches zero velocity, reverses its direction of motion, reaches zero velocity again then
returns to moving in the same direction as the vortex pair. This behaviour is repeated
periodically. This trajectory consists of both following and swimming motions. By
following, we mean when the vortices and the body move in the same direction
following each other (the relative equilibria are examples of following motions). By
swimming, we mean when the body moves in the direction opposite to the motion of
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Figure 9. Snapshots of the streamlines at three different times taken from the trajectory
depicted in figure 7. (a) A plot of the streamlines at time t = 86.62. The ellipse is moving in
the direction opposite to the point vortices with velocity V1 = + 0.4586. Clearly, there exist
two stagnation points in the flow around the ellipse. (b) A plot of the streamlines at time
t =90.87 where the ellipse’s velocity is almost zero. The instantaneous stagnation point lies at
the boundary of the ellipse. (c) A plot of the streamlines at t = 106.65 at which the ellipse is
moving with velocity V1 = − 1.1824 in the same direction as the point vortices and there are
no stagnation points outside the solid body.

the vortices themselves. Such swimming motions are characterized by an instantaneous
stagnation point in the flow between the body and the vortices. If we understand how
to create such stagnation points in the flow by perturbing from a relative equilibrium,
we could exploit the relative equilibria to design swimming trajectories. Snapshots
of the streamlines at three different times are depicted in figure 9. In figure 9(a)
is a plot of the streamlines at time t = 86.62 at which the ellipse is moving in the
direction opposite to the point vortices with velocity V1 = + 0.4586. Clearly, there
exist two stagnation points in the flow around the ellipse. Figure 9(b) is a plot
of the streamlines at time t = 90.87 where the ellipse’s velocity is almost zero. The
instantaneous stagnation point lies at the boundary of the ellipse. Figure 9(c) is a
plot of the streamlines at t = 106.65 at which the ellipse is moving with velocity
V1 = − 1.1824 in the same direction as the point vortices. This behaviour reminds
as of the leapfrogging of vortex rings considered in Shashikanth & Marsden (2003).
The vortex pair and its image vorticity may be thought of as a pair of vortex rings
subject to the constraint that the boundary of the solid is a streamline – this analogy
remains to be investigated.

A similar behaviour is observed in figure 10 which depicts the motion of the
cylinder and two vortex pairs in inertial frame. The parameter values are set at
a =3, b =1, Γ1 = Γ2 = − 10, Γ3 = Γ4 = 10, The point vortices are initially located at
Z1(0) = − 5 + i10, Z2(0) = 5 + i10, Z3(0) = − 5 − i10, and Z4(0) = 5 − i10, while the
ellipse is placed at (0, 0) with zero initial velocity and zero orientation. The integration
time is 300.

The trajectories in figures 7 and 10 may be relevant for understanding the swimming
of a fish in an existing vortex wake (such as that created by two neighbouring fish). As
illustrated in figure 11 for three vortex pairs, by properly choosing the initial location
of the vortex pairs and their strength, we could obtain a swimming motion of the
body in the direction opposite to the motion of the vortex pairs. This motion reminds
as of the swimming of a trout in an externally generated vortex street reported in Liao
et al. (2003), where the fish exploits the presence of vorticity to swim upstream at a
lower energy cost. In figure 11, the ellipse itself spends no energy (it does not generate
any force) and its motion is due entirely to energy exploited from the presence of the
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Figure 10. The motion of the cylinder and two vortex pairs in inertial frame. The parameter
values are set at a = 3, b = 1, Γ1 = Γ2 = − 10, Γ3 = Γ4 = 10. The point vortices are initially
located at Z1(0) = − 5 + i10, Z2(0) = 5 + i10, Z3(0) = − 5 − i10, and Z4(0) = 5 − i10, while the
ellipse is initially placed at (0, 0) with zero initial velocity and zero orientation. The integration
time is 300.
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Figure 11. The trajectories of three vortex pairs in body-fixed frame are depicted in the solid
black line. The streamlines at the end of the integration time (at t = 41) are superimposed. The
parameter values are set to a = 3, b =1, Γ1 =Γ2 = Γ3 = − 10, Γ4 = Γ5 =Γ6 = 10, The vortex
pairs are initially located at Z1,4(0) = 20 ± i4.5, Z2,5(0) = 6 ± i3.7, and Z3,6(0) = − 10 ± i3.6,
while the ellipse is initially placed at (0, 0) with zero initial velocity and zero orientation. The
velocity of the ellipse (b) is non-negative for all t which means that the ellipse achieves a net
motion to the right while the point vortices are advected in the opposite direction. Based on
this, we could propose a simple model that emulates the motion of a body in an externally
generated vortex street by periodically introducing vortex pairs at the leading end of the body
while periodically removing vortex pairs as they are advected far away from the body.

point vortices. Of course, this comparison is only qualitative but, inspired by these
trajectories, we could propose a simple model to emulate the motion of a body in
an externally generated vortex street. Consider an elliptic body (say starting at zero
velocity) and place it between a number of vortex pairs, as in figure 11. Integrate
in time while periodically introducing vortex pairs in the flow at the leading end
of the ellipse and removing vortex pairs from the flow when they reach the other
end of the ellipse. The introduction and removal of vortex pairs can be justified on
physical grounds as follows. The introduction of vortex pairs emulates the vortices
shed periodically by a source external to the body. The removal of vorticity after
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some time emulates the diminishing effect of the vortices on the motion of the body
as they move far away from the body.

7. Summary
This paper considered the dynamics of a rigid body interacting with a finite

number of point vortices in potential flow. The dynamics of the solid–fluid system
was formulated in terms of the solid variables and the position of the point vortices
only. The motion of the point vortices is governed by a Kirchhoff–Routh function and
the equations of motion for the rigid body are derived using Newtonian mechanics.
These equations were applied to the problem of an elliptic body interacting with
a vortex pair. The associated relative equilibria and their stability was discussed.
These models may be relevant to understanding the interaction of fish with ambient
vorticity, as illustrated via numerical examples. The formulation presented here can
be extended to study the interaction of point vortices with several rigid bodies in
application to fish schooling. Such extension would require generalizing the work
of Crowdy & Marshall (2005) which provides analytical formulae for the Kirchhoff–
Routh function in multiply connected fluid domain to the case of fluid domains with
moving boundaries.

The authors would like to thank Professor Paul Newton for useful comments and
discussions. This work is partially supported by the National Science Foundation
through the award CMMI 06-44925.
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